Pathfinding in stochastic environments: learning vs planning

Author:

Skrynnik Alexey123,Andreychuk Anton2,Yakovlev Konstantin23,Panov Aleksandr13

Affiliation:

1. Cognitive Dynamic Systems, Moscow Institute of Physics and Technology, Moscow, Russia

2. Artificial Intelligence Research Institute AIRI, Moscow, Russia

3. Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences, Moscow, Russia

Abstract

Among the main challenges associated with navigating a mobile robot in complex environments are partial observability and stochasticity. This work proposes a stochastic formulation of the pathfinding problem, assuming that obstacles of arbitrary shapes may appear and disappear at random moments of time. Moreover, we consider the case when the environment is only partially observable for an agent. We study and evaluate two orthogonal approaches to tackle the problem of reaching the goal under such conditions: planning and learning. Within planning, an agent constantly re-plans and updates the path based on the history of the observations using a search-based planner. Within learning, an agent asynchronously learns to optimize a policy function using recurrent neural networks (we propose an original efficient, scalable approach). We carry on an extensive empirical evaluation of both approaches that show that the learning-based approach scales better to the increasing number of the unpredictably appearing/disappearing obstacles. At the same time, the planning-based one is preferable when the environment is close-to-the-deterministic (i.e., external disturbances are rare). Code available at https://github.com/Tviskaron/pathfinding-in-stochastic-envs.

Publisher

PeerJ

Subject

General Computer Science

Reference38 articles.

1. Dota 2 with large scale deep reinforcement learning;Berner,2019

2. Simultaneous localization and mapping: a survey of current trends in autonomous driving;Bresson;IEEE Transactions on Intelligent Vehicles,2017

3. Autonomous mobile robot path planning in unknown dynamic environments using neural dynamics;Chen;Soft Computing,2020

4. Leveraging procedural generation to benchmark reinforcement learning;Cobbe,2020

5. Q-Mixing network for multi-agent pathfinding in partially observable grid environments;Davydov,2021

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3