Histo-CADx: duo cascaded fusion stages for breast cancer diagnosis from histopathological images

Author:

Attallah Omneya1,Anwar Fatma2,Ghanem Nagia M.2,Ismail Mohamed A.2

Affiliation:

1. Department of Electronics and Communications Engineering, College of Engineering and Technology, Arab Academy for Science, Technology, and Maritime Transport, Alexandria, Alexandria, Egypt

2. Computer and Systems Engineering Department, Alexandria University, Alexandria, Egypt

Abstract

Breast cancer (BC) is one of the most common types of cancer that affects females worldwide. It may lead to irreversible complications and even death due to late diagnosis and treatment. The pathological analysis is considered the gold standard for BC detection, but it is a challenging task. Automatic diagnosis of BC could reduce death rates, by creating a computer aided diagnosis (CADx) system capable of accurately identifying BC at an early stage and decreasing the time consumed by pathologists during examinations. This paper proposes a novel CADx system named Histo-CADx for the automatic diagnosis of BC. Most related studies were based on individual deep learning methods. Also, studies did not examine the influence of fusing features from multiple CNNs and handcrafted features. In addition, related studies did not investigate the best combination of fused features that influence the performance of the CADx. Therefore, Histo-CADx is based on two stages of fusion. The first fusion stage involves the investigation of the impact of fusing several deep learning (DL) techniques with handcrafted feature extraction methods using the auto-encoder DL method. This stage also examines and searches for a suitable set of fused features that could improve the performance of Histo-CADx. The second fusion stage constructs a multiple classifier system (MCS) for fusing outputs from three classifiers, to further improve the accuracy of the proposed Histo-CADx. The performance of Histo-CADx is evaluated using two public datasets; specifically, the BreakHis and the ICIAR 2018 datasets. The results from the analysis of both datasets verified that the two fusion stages of Histo-CADx successfully improved the accuracy of the CADx compared to CADx constructed with individual features. Furthermore, using the auto-encoder for the fusion process has reduced the computation cost of the system. Moreover, the results after the two fusion stages confirmed that Histo-CADx is reliable and has the capacity of classifying BC more accurately compared to other latest studies. Consequently, it can be used by pathologists to help them in the accurate diagnosis of BC. In addition, it can decrease the time and effort needed by medical experts during the examination.

Publisher

PeerJ

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3