Color-CADx: a deep learning approach for colorectal cancer classification through triple convolutional neural networks and discrete cosine transform

Author:

Sharkas Maha,Attallah Omneya

Abstract

AbstractColorectal cancer (CRC) exhibits a significant death rate that consistently impacts human lives worldwide. Histopathological examination is the standard method for CRC diagnosis. However, it is complicated, time-consuming, and subjective. Computer-aided diagnostic (CAD) systems using digital pathology can help pathologists diagnose CRC faster and more accurately than manual histopathology examinations. Deep learning algorithms especially convolutional neural networks (CNNs) are advocated for diagnosis of CRC. Nevertheless, most previous CAD systems obtained features from one CNN, these features are of huge dimension. Also, they relied on spatial information only to achieve classification. In this paper, a CAD system is proposed called “Color-CADx” for CRC recognition. Different CNNs namely ResNet50, DenseNet201, and AlexNet are used for end-to-end classification at different training–testing ratios. Moreover, features are extracted from these CNNs and reduced using discrete cosine transform (DCT). DCT is also utilized to acquire spectral representation. Afterward, it is used to further select a reduced set of deep features. Furthermore, DCT coefficients obtained in the previous step are concatenated and the analysis of variance (ANOVA) feature selection approach is applied to choose significant features. Finally, machine learning classifiers are employed for CRC classification. Two publicly available datasets were investigated which are the NCT-CRC-HE-100 K dataset and the Kather_texture_2016_image_tiles dataset. The highest achieved accuracy reached 99.3% for the NCT-CRC-HE-100 K dataset and 96.8% for the Kather_texture_2016_image_tiles dataset. DCT and ANOVA have successfully lowered feature dimensionality thus reducing complexity. Color-CADx has demonstrated efficacy in terms of accuracy, as its performance surpasses that of the most recent advancements.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3