A dynamic graph Hawkes process based on linear complexity self-attention for dynamic recommender systems

Author:

Hou Zhiwen1,Lv Xiaojun2,Zhou Yuchen1,Bu Lingbin1,Ma Qiming1,Wang Yifan1,Bu Fanliang1

Affiliation:

1. School of Information Network Security, People’s Public Security University of China, Beijing, China

2. Institute of Computing Technology, China Academy of Railway Sciences Corporation Limited, Beijing, China

Abstract

The dynamic recommender system realizes the real-time recommendation for users by learning the dynamic interest characteristics, which is especially suitable for the scenarios of rapid transfer of user interests, such as e-commerce and social media. The dynamic recommendation model mainly depends on the user-item history interaction sequence with timestamp, which contains historical records that reflect changes in the true interests of users and the popularity of items. Previous methods usually model interaction sequences to learn the dynamic embedding of users and items. However, these methods can not directly capture the excitation effects of different historical information on the evolution process of both sides of the interaction, i.e., the ability of events to influence the occurrence of another event. In this work, we propose a Dynamic Graph Hawkes Process based on Linear complexity Self-Attention (DGHP-LISA) for dynamic recommender systems, which is a new framework for modeling the dynamic relationship between users and items at the same time. Specifically, DGHP-LISA is built on dynamic graph and uses Hawkes process to capture the excitation effects between events. In addition, we propose a new self-attention with linear complexity to model the time correlation of different historical events and the dynamic correlation between different update mechanisms, which drives more accurate modeling of the evolution process of both sides of the interaction. Extensive experiments on three real-world datasets show that our model achieves consistent improvements over state-of-the-art baselines.

Funder

The National Natural Science Foundation of China-China State Railway Group Co., Ltd. Railway Basic Research Joint Fund

The Scientific Funding for China Academy of Railway Sciences Corporation Limited

Publisher

PeerJ

Subject

General Computer Science

Reference39 articles.

1. Patient subtyping via time-aware LSTM networks;Baytas,2017

2. Latent cross: making use of context in recurrent recommender systems;Beutel,2018

3. A2ˆ-nets: double attention networks;Chen,2018

4. Deep neural networks for youtube recommendations;Covington,2016

5. Deep coevolutionary network: embedding user and item features for recommendation;Dai,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DyCARS: A dynamic context-aware recommendation system;Mathematical Biosciences and Engineering;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3