DyCARS: A dynamic context-aware recommendation system

Author:

Hou Zhiwen,Bu Fanliang,Zhou Yuchen,Bu Lingbin,Ma Qiming,Wang Yifan,Zhai Hanming,Han Zhuxuan

Abstract

<abstract> <p>Dynamic recommendation systems aim to achieve real-time updates and dynamic migration of user interests, primarily utilizing user-item interaction sequences with timestamps to capture the dynamic changes in user interests and item attributes. Recent research has mainly centered on two aspects. First, it involves modeling the dynamic interaction relationships between users and items using dynamic graphs. Second, it focuses on mining their long-term and short-term interaction patterns. This is achieved through the joint learning of static and dynamic embeddings for both users and items. Although most existing methods have achieved some success in modeling the historical interaction sequences between users and items, there is still room for improvement, particularly in terms of modeling the long-term dependency structures of dynamic interaction histories and extracting the most relevant delayed interaction patterns. To address this issue, we proposed a Dynamic Context-Aware Recommendation System for dynamic recommendation. Specifically, our model is built on a dynamic graph and utilizes the static embeddings of recent user-item interactions as dynamic context. Additionally, we constructed a Gated Multi-Layer Perceptron encoder to capture the long-term dependency structure in the dynamic interaction history and extract high-level features. Then, we introduced an Attention Pooling network to learn similarity scores between high-level features in the user-item dynamic interaction history. By calculating bidirectional attention weights, we extracted the most relevant delayed interaction patterns from the historical sequence to predict the dynamic embeddings of users and items. Additionally, we proposed a loss function called the Pairwise Cosine Similarity loss for dynamic recommendation to jointly optimize the static and dynamic embeddings of two types of nodes. Finally, extensive experiments on two real-world datasets, LastFM, and the Global Terrorism Database showed that our model achieves consistent improvements over state-of-the-art baselines.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Reference56 articles.

1. Z. Lin, An empirical investigation of user and system recommendations in e-commerce, Decis. Support Syst., 68 (2014), 111–124. https://doi.org/10.1016/j.dss.2014.10.003

2. T. Iba, K. Nemoto, B. Peters, P. A. Gloor, Analyzing the creative editing behavior of wikipedia editors: Through dynamic social network analysis, Proc.-Soc. Behav. Sci., 2 (2010), 6441–6456. https://doi.org/10.1016/j.sbspro.2010.04.054

3. T. R. Liyanagunawardena, A. A. Adams, S. A. Williams, MOOCs: A systematic study of the published literature 2008–2012, Int. Rev. Res. Open Distrib. Learn., 14 (2013), 202–227. https://doi.org/10.19173/irrodl.v14i3.1455

4. Q. Liu, S. Wu, L. Wang, T. Tan, Predicting the next location: A recurrent model with spatial and temporal contexts, in Thirtieth AAAI Conference on Artificial Intelligence, 30 (2016). https://doi.org/10.1609/aaai.v30i1.9971

5. S. Wu, Q. Liu, P. Bai, L. Wang, T. Tan, SAPE: A system for situation-aware public security evaluation, in Thirtieth AAAI Conference on Artificial Intelligence, 30 (2016). https://doi.org/10.1609/aaai.v30i1.9828

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3