Legal document similarity: a multi-criteria decision-making perspective

Author:

Wagh Rupali S.1,Anand Deepa2

Affiliation:

1. Department of Computer Science, JAIN Deemed to be University, Bangalore, Karnataka, India

2. Department of Information Science and Engineering, CMR Institute of Technology, Bangalore, Karnataka, India

Abstract

The vast volume of documents available in legal databases demands effective information retrieval approaches which take into consideration the intricacies of the legal domain. Relevant document retrieval is the backbone of the legal domain. The concept of relevance in the legal domain is very complex and multi-faceted. In this work, we propose a novel approach of concept based similarity estimation among court judgments. We use a graph-based method, to identify prominent concepts present in a judgment and extract sentences representative of these concepts. The sentences and concepts so mined are used to express/visualize likeness among concepts between a pair of documents from different perspectives. We also propose to aggregate the different levels of matching so obtained into one measure quantifying the level of similarity between a judgment pair. We employ the ordered weighted average (OWA) family of aggregation operators for obtaining the similarity value. The experimental results suggest that the proposed approach of concept based similarity is effective in the extraction of relevant legal documents and performs better than other competing techniques. Additionally, the proposed two-level abstraction of similarity enables informative visualization for deeper insights into case relevance.

Publisher

PeerJ

Subject

General Computer Science

Reference32 articles.

1. A history of AI and Law in 50 papers: 25 years of the international conference on AI and Law;Bench-Capon;Artificial Intelligence and Law,2012

2. Data-centric and logic-based models for automated legal problem solving;Branting;Artificial Intelligence and Law,2017

3. Compound interdependences in MOP;Carlsson,1996

4. Semantic web for the legal domain: the next step;Casanovas;Semantic Web,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3