Recognition of Chinese Legal Elements Based on Transfer Learning and Semantic Relevance

Author:

Zhang Dian1ORCID,Zhang Hewei1ORCID,Wang Long1ORCID,Cui Jiamei1ORCID,Zheng Wen12ORCID

Affiliation:

1. Institute of Public-Safety and Big Data, College of Data Science, Taiyuan University of Technology, Taiyuan 030060, China

2. Center for Healthy Big Data, Changzhi Medical College, Changzhi, Shanxi 046000, China

Abstract

In recent years, LegalAI has rapidly attracted the attention of AI researchers and legal professionals alike. Elements of LegalAI are known as legal elements. These elements can bring intermediate supervisory information to the judicial trial task and make the model’s prediction results more interpretable. This paper proposes a Chinese legal element identification method based on BERT’s contextual relationship capture mechanism to identify the elements by measuring the similarity between legal elements and case descriptions. On the China Law Research Cup 2019 Judicial Artificial Intelligence Challenge (CAIL-2019) dataset, the final result improves 4.2 points over the method based on the BERT model but without using similarity metrics. This research method makes full use of the semantic information of text, which is essential in the judicial field of document processing.

Funder

National Key Research and Development Project

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Reference29 articles.

1. Law and Word Order: NLP in Legal Tech

2. Application of artificial intelligence technology in the construction of intelligent courts;C. J. Yuan;AI-View,2020

3. Similar cases recommendation using legal knowledge graphs;J. S. Dhani

4. A Question Answer System for the Mauritian Judiciary

5. Legal document similarity: a multi-criteria decision-making perspective

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Legal Elements Extraction via Label Recross Attention and Contrastive Learning;2023 IEEE 6th International Conference on Big Data and Artificial Intelligence (BDAI);2023-07-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3