Research on image classification method based on improved multi-scale relational network

Author:

Zheng Wenfeng1,Liu Xiangjun1,Yin Lirong2

Affiliation:

1. School of Automation, University of Electronic Science and Technology of China, Chengdu, China

2. Department of Geography and Anthropology, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, LA, United States of America

Abstract

Small sample learning aims to learn information about object categories from a single or a few training samples. This learning style is crucial for deep learning methods based on large amounts of data. The deep learning method can solve small sample learning through the idea of meta-learning “how to learn by using previous experience.” Therefore, this paper takes image classification as the research object to study how meta-learning quickly learns from a small number of sample images. The main contents are as follows: After considering the distribution difference of data sets on the generalization performance of measurement learning and the advantages of optimizing the initial characterization method, this paper adds the model-independent meta-learning algorithm and designs a multi-scale meta-relational network. First, the idea of META-SGD is adopted, and the inner learning rate is taken as the learning vector and model parameter to learn together. Secondly, in the meta-training process, the model-independent meta-learning algorithm is used to find the optimal parameters of the model. The inner gradient iteration is canceled in the process of meta-validation and meta-test. The experimental results show that the multi-scale meta-relational network makes the learned measurement have stronger generalization ability, which further improves the classification accuracy on the benchmark set and avoids the need for fine-tuning of the model-independent meta-learning algorithm.

Funder

Sichuan Science and Technology Program

Publisher

PeerJ

Subject

General Computer Science

Reference35 articles.

1. The role of metalearning in study processes;Biggs;British Journal of Educational Psychology,1985

2. Temporal evolution characteristics of PM2. 5 concentration based on continuous wavelet transform;Chen;Science of The Total Environment,2020

3. Multi-scale relation network for few-shot learning based on meta-learning;Ding,2019

4. A Bayesian approach to unsupervised one-shot learning of object categories;Fe-Fei,2003

5. Model-agnostic meta-learning for fast adaptation of deep networks;Finn,2017

Cited by 151 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3