Intelligent image recognition using lightweight convolutional neural networks model in edge computing environment

Author:

Qiu Lingling

Abstract

In order to enhance the performance of intelligent image recognition, this study optimizes the image recognition model through lightweight convolutional neural networks (CNNs) and cloud computing technology. The study begins by introducing the relevant theories and models of edge computing (EC) and lightweight CNNs models. Next, this study focuses on optimizing traditional image recognition models. Finally, the effectiveness and reliability of the proposed model are experimentally validated. The experimental results indicate that, when recognizing 1000 images, the average recognition times per image on cloud servers and edge servers are 13.33 ms and 50.11 ms, respectively. Despite the faster speed of cloud servers, the performance of edge servers can be improved by stacking servers. When the number of edge servers reaches 4, their recognition speed surpasses that of the cloud server model. Additionally, comparing the latency and processing time between EC and cloud computing architectures, it is observed that, with an increase in the number of processed images, the average processing time per image in the EC architecture remains relatively stable and consistent. In contrast, the average processing time gradually increases in the cloud computing architecture. This indicates a significant impact of the number of images on the processing rate of the cloud computing architecture. Therefore, as the time gap in processing between cloud computing and EC increases, the advantages of the EC architecture become more apparent. This study’s significance lies in advancing the development of deep learning technology and providing possibilities for its widespread practical application. The contribution of this study lies in promoting the development of EC and lightweight neural network models, offering valuable references and guidance for practical applications in related fields.

Publisher

IOS Press

Reference28 articles.

1. State-of-the-art in 360 video/image processing: Perception, assessment and compression;Xu;IEEE Journal of Selected Topics in Signal Processing.,2020

2. SpectralFormer: Rethinking hyperspectral image classification with transformers;Hong;IEEE Transactions on Geoscience and Remote Sensing.,2021

3. Resmlp: Feedforward networks for image classification with data-efficient training;Touvron;IEEE Transactions on Pattern Analysis and Machine Intelligence.,2022

4. Research on image classification method based on improved multi-scale relational network;Zheng;PeerJ Computer Science.,2021

5. Vision transformers for remote sensing image classification;Bazi;Remote Sensing.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3