Affiliation:
1. University of Manouba, National School of Computer Sciences, Manouba, Tunisia
2. University of Jeddah, College of Computer Science and Engineering, Jeddah, Saudi Arabia
Abstract
Energy is at the basis of any social or economic development. The fossil energy is the most used energy source in the world due to the cheap building cost of the power plants. In 2017, fossil fuels generated 64.5% of the world electricity. Since, on the one hand, these plants produce large amount of carbon dioxide which drives climate change, and on the other hand, the storage of existing world fossil resources is in continuous decrease, safer and highly available energy sources should be considered. Hence, for human well-being, and for a green environment, these fossil plants should be switched to cleaner ones. Renewable energy resources have begun to be used as alternatives. These resources have many advantages such as sustainability and environmental protection. Nevertheless, they require higher investment costs. In addition, the reliability of many planted systems is poor. In most cases these systems are not sufficient to ensure a continuous demand of energy for all in needy regions because most of their resources are climate dependent. The main contributions of this research are (i) to propose a natural formalisation of the renewable energy distribution problem, based on COP (Constraint Optimisation Problem), that takes into consideration all the constraints related to this problem; (ii) to propose a novel multi-agent dynamic (A-RESS for Agent based Renewable Energy Sharing System) to solve this problem. The proposed system was implemented and the obtained results show its efficiency and performance in terms of produced, consumed and lost energy.
Funder
College of Computer Science and Engineering, University of Jeddah, Saudi Arabia
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献