Abstract
Renewable energy and information technologies are changing electrical energy distribution, favoring a move towards distributed production and trading between many buyers and sellers. There is new potential for trading between prosumers, entities which both consume and produce energy in small quantities. This work explores the optimization of energy trading between two prosumers, each of which consists of a load, renewable supply, and energy storage. The problem is described within a model predictive control (MPC) framework, which includes a single objective function to penalize undesirable behavior, such as the use of energy from a utility company. MPC integrates future predictions of supply and demand into current dispatch decisions. The control system determines energy flows between each renewable supply and load, battery usage, and transfers between the two prosumers. At each time step, future predictions are used to create an optimized power dispatch strategy between the system prosumers, maximizing renewable energy use. Modeling results indicate that this coordinated energy sharing between a pair of prosumers can improve their overall renewable energy penetration. For one specific choice of prosumers (mixed residential–commercial) penetration is shown to increase from 71% to 84%.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献