Affiliation:
1. Department of Statistics, Abdul Wali Khan University, Mardan, KP, Pakistan
2. Department of Computer Science, Auckland University of Technology, Auckland, New Zealand
3. Department of Statistics, Islamia College University, Peshawar, KP, Pakistan
Abstract
Background
Forecasting the time of forthcoming pandemic reduces the impact of diseases by taking precautionary steps such as public health messaging and raising the consciousness of doctors. With the continuous and rapid increase in the cumulative incidence of COVID-19, statistical and outbreak prediction models including various machine learning (ML) models are being used by the research community to track and predict the trend of the epidemic, and also in developing appropriate strategies to combat and manage its spread.
Methods
In this paper, we present a comparative analysis of various ML approaches including Support Vector Machine, Random Forest, K-Nearest Neighbor and Artificial Neural Network in predicting the COVID-19 outbreak in the epidemiological domain. We first apply the autoregressive distributed lag (ARDL) method to identify and model the short and long-run relationships of the time-series COVID-19 datasets. That is, we determine the lags between a response variable and its respective explanatory time series variables as independent variables. Then, the resulting significant variables concerning their lags are used in the regression model selected by the ARDL for predicting and forecasting the trend of the epidemic.
Results
Statistical measures—Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and Symmetric Mean Absolute Percentage Error (SMAPE)—are used for model accuracy. The values of MAPE for the best-selected models for confirmed, recovered and deaths cases are 0.003, 0.006 and 0.115, respectively, which falls under the category of highly accurate forecasts. In addition, we computed 15 days ahead forecast for the daily deaths, recovered, and confirm patients and the cases fluctuated across time in all aspects. Besides, the results reveal the advantages of ML algorithms for supporting the decision-making of evolving short-term policies.
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献