Artificial neural network-based ground reaction force estimation and learning for dynamic-legged robot systems

Author:

An Jaehoon1,Lee Inho2

Affiliation:

1. Department of Electrical and Electronics Engineering, Pusan National University, Busan, South Korea

2. Department of Electronics Engineering, Pusan National University, Busan, South Korea

Abstract

Legged robots have become popular in recent years due to their ability to locomote on rough terrains; these robots are able to walk on narrow stepping-stones, go upstairs, and explore soft ground such as sand. Ground reaction force (GRF) is the force exerted on the body by the ground when they are in contact. This is a key element and is widely used for programming the locomotion of the legged robots. Being capable of estimating the GRF is advantageous over measuring it with the actual sensor system. Estimating allows one to simplify the system, and it is meant to be capable of prediction, and so on. In this article, we present a neural network approach for GRF estimation for the legged robot system. In order to fundamentally study the GRF estimation of the robot leg, we demonstrate our approach for a single-legged robot with a degree of freedom (DoF) of two with hip and knee joints on a flat-surface. The first joint is directly driven from the actuator, and another joint is belt-pulley driven from the second actuator to take advantage of the long range of motion. The neural network is designed to estimate GRF without attaching force sensors such as load cells, and the encoder is the only sensor used for the estimation. We propose a two-staged multi-layer perceptron (MLP) solution based on supervised learning to estimate GRF in the physical-world. The first stage of the MLP model is trained using datasets from the simulation, enabling it to estimate the simulation-staged GRF. The second stage of the MLP model is trained in the physical world using the simulation-staged GRF obtained from the first stage MLP as the input. This approach enables the second stage MLP to bridge the simulation to the physical world. The root mean squared error (RMSE) is 0.9949 N on the validation datasets in the best case. The performance of the trained network is evaluated when the robot follows trajectories that are not used in training the two-stage GRF estimation network.

Funder

National Research Foundation of Korea

Publisher

PeerJ

Subject

General Computer Science

Reference27 articles.

1. Robust ground reaction force estimation and control of lower-limb prostheses: theory and simulation;Azimi;IEEE Transactions on Systems, Man, and Cybernetics: Systems,2018

2. Calculation of vertical ground reaction force estimates during running from positional data;Bobbert;Journal of Biomechanics,1991

3. The coefficient of determination r-squared is more informative than smape, mae, mape, mse and rmse in regression analysis evaluation;Chicco;PeerJ Computer Science,2021

4. Energy-efficient hydraulic pump control for legged robots using model predictive control;Cho;IEEE/ASME Transactions on Mechatronics,2022

5. Adabatch: adaptive batch sizes for training deep neural networks;Devarakonda,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3