On the classification of simple and complex biological images using Krawtchouk moments and Generalized pseudo-Zernike moments: a case study with fly wing images and breast cancer mammograms

Author:

Goh Jia Yin1,Khang Tsung Fei12ORCID

Affiliation:

1. Institute of Mathematical Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia

2. Universiti Malaya Centre for Data Analytics, Universiti Malaya, Kuala Lumpur, Malaysia

Abstract

In image analysis, orthogonal moments are useful mathematical transformations for creating new features from digital images. Moreover, orthogonal moment invariants produce image features that are resistant to translation, rotation, and scaling operations. Here, we show the result of a case study in biological image analysis to help researchers judge the potential efficacy of image features derived from orthogonal moments in a machine learning context. In taxonomic classification of forensically important flies from the Sarcophagidae and the Calliphoridae family (n = 74), we found the GUIDE random forests model was able to completely classify samples from 15 different species correctly based on Krawtchouk moment invariant features generated from fly wing images, with zero out-of-bag error probability. For the more challenging problem of classifying breast masses based solely on digital mammograms from the CBIS-DDSM database (n = 1,151), we found that image features generated from the Generalized pseudo-Zernike moments and the Krawtchouk moments only enabled the GUIDE kernel model to achieve modest classification performance. However, using the predicted probability of malignancy from GUIDE as a feature together with five expert features resulted in a reasonably good model that has mean sensitivity of 85%, mean specificity of 61%, and mean accuracy of 70%. We conclude that orthogonal moments have high potential as informative image features in taxonomic classification problems where the patterns of biological variations are not overly complex. For more complicated and heterogeneous patterns of biological variations such as those present in medical images, relying on orthogonal moments alone to reach strong classification performance is unrealistic, but integrating prediction result using them with carefully selected expert features may still produce reasonably good prediction models.

Funder

Faculty of Science, Universiti Malaya, Malaysia

Publisher

PeerJ

Subject

General Computer Science

Reference74 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3