Machine learning analysis of wing venation patterns accurately identifies Sarcophagidae, Calliphoridae and Muscidae fly species

Author:

Ling Min Hao1,Ivorra Tania23,Heo Chong Chin2,Wardhana April Hari45,Hall Martin Jonathan Richard6ORCID,Tan Siew Hwa78ORCID,Mohamed Zulqarnain8,Khang Tsung Fei19ORCID

Affiliation:

1. Institute of Mathematical Sciences, Faculty of Science Universiti Malaya Kuala Lumpur Malaysia

2. Department of Medical Microbiology and Parasitology, Faculty of Medicine Universiti Teknologi MARA (UiTM) Sungai Buloh Selangor Malaysia

3. Department of Environmental Sciences and Natural Resources University of Alicante Alicante Spain

4. Research Center for Veterinary Science The National Research and Innovation Agency Bogor Indonesia

5. Faculty of Veterinary Medicine Airlangga University Surabaya Indonesia

6. Natural History Museum London UK

7. International Department of Dipterology Kuala Lumpur Laboratory Kuala Lumpur Malaysia

8. Institute of Biological Sciences, Faculty of Science Universiti Malaya Kuala Lumpur Malaysia

9. Universiti Malaya Centre for Data Analytics Universiti Malaya Kuala Lumpur Malaysia

Abstract

AbstractIn medical, veterinary and forensic entomology, the ease and affordability of image data acquisition have resulted in whole‐image analysis becoming an invaluable approach for species identification. Krawtchouk moment invariants are a classical mathematical transformation that can extract local features from an image, thus allowing subtle species‐specific biological variations to be accentuated for subsequent analyses. We extracted Krawtchouk moment invariant features from binarised wing images of 759 male fly specimens from the Calliphoridae, Sarcophagidae and Muscidae families (13 species and a species variant). Subsequently, we trained the Generalized, Unbiased, Interaction Detection and Estimation random forests classifier using linear discriminants derived from these features and inferred the species identity of specimens from the test samples. Fivefold cross‐validation results show a 98.56 ± 0.38% (standard error) mean identification accuracy at the family level and a 91.04 ± 1.33% mean identification accuracy at the species level. The mean F1‐score of 0.89 ± 0.02 reflects good balance of precision and recall properties of the model. The present study consolidates findings from previous small pilot studies of the usefulness of wing venation patterns for inferring species identities. Thus, the stage is set for the development of a mature data analytic ecosystem for routine computer image‐based identification of fly species that are of medical, veterinary and forensic importance.

Funder

International Atomic Energy Agency

Publisher

Wiley

Subject

Insect Science,General Veterinary,Ecology, Evolution, Behavior and Systematics,Parasitology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3