Predicting medical device failure: a promise to reduce healthcare facilities cost through smart healthcare management

Author:

Abd Rahman Noorul Husna12,Mohamad Zaki Muhammad Hazim1,Hasikin Khairunnisa13,Abd Razak Nasrul Anuar1,Ibrahim Ayman Khaleel4,Lai Khin Wee1ORCID

Affiliation:

1. Department of Biomedical Engineering, Universiti Malaya, Lembah Pantai, Wilayah Persekutuan Kuala Lumpur, Malaysia

2. Engineering Services Division, Ministry of Health, Putrajaya, Wilayah Persekutuan Putrajaya, Malaysia

3. Center of Intelligent Systems for Emerging Technology (CISET), Faculty of Engineering, Universiti Malaya, Lembah Pantai, Wilayah Persekutuan Kuala Lumpur, Malaysia

4. Faculty of Computing and Informatics, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia

Abstract

Background The advancement of biomedical research generates myriad healthcare-relevant data, including medical records and medical device maintenance information. The COVID-19 pandemic significantly affects the global mortality rate, creating an enormous demand for medical devices. As information technology has advanced, the concept of intelligent healthcare has steadily gained prominence. Smart healthcare utilises a new generation of information technologies, such as the Internet of Things (loT), big data, cloud computing, and artificial intelligence, to completely transform the traditional medical system. With the intention of presenting the concept of smart healthcare, a predictive model is proposed to predict medical device failure for intelligent management of healthcare services. Methods Present healthcare device management can be improved by proposing a predictive machine learning model that prognosticates the tendency of medical device failures toward smart healthcare. The predictive model is developed based on 8,294 critical medical devices from 44 different types of equipment extracted from 15 healthcare facilities in Malaysia. The model classifies the device into three classes; (i) class 1, where the device is unlikely to fail within the first 3 years of purchase, (ii) class 2, where the device is likely to fail within 3 years from purchase date, and (iii) class 3 where the device is likely to fail more than 3 years after purchase. The goal is to establish a precise maintenance schedule and reduce maintenance and resource costs based on the time to the first failure event. A machine learning and deep learning technique were compared, and the best robust model for smart healthcare was proposed. Results This study compares five algorithms in machine learning and three optimizers in deep learning techniques. The best optimized predictive model is based on ensemble classifier and SGDM optimizer, respectively. An ensemble classifier model produces 77.90%, 87.60%, and 75.39% for accuracy, specificity, and precision compared to 70.30%, 83.71%, and 67.15% for deep learning models. The ensemble classifier model improves to 79.50%, 88.36%, and 77.43% for accuracy, specificity, and precision after significant features are identified. The result concludes although machine learning has better accuracy than deep learning, more training time is required, which is 11.49 min instead of 1 min 5 s when deep learning is applied. The model accuracy shall be improved by introducing unstructured data from maintenance notes and is considered the author’s future work because dealing with text data is time-consuming. The proposed model has proven to improve the devices’ maintenance strategy with a Malaysian Ringgit (MYR) cost reduction of approximately MYR 326,330.88 per year. Therefore, the maintenance cost would drastically decrease if this smart predictive model is included in the healthcare management system.

Publisher

PeerJ

Subject

General Computer Science

Reference66 articles.

1. The impact of calibration on medical devices performance and patient safety;Altayyar;Biomedical Research,2018

2. An overview of deep learning approaches in chest radiograph;Anis;IEEE Access,2020

3. Assessment of medical equipment maintenance management: proposed checklist using Iranian experience;Arab-Zozani;BioMedical Engineering OnLine,2021

4. Fuzzy logic based failure modes and effects analysis on medical ventilators;Arathy,2020

5. A novel approach for healthcare equipments lifespan assessment;Aridi;International Journal on Advances in Life Sciences,2016

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3