Systematic review of predictive maintenance and digital twin technologies challenges, opportunities, and best practices

Author:

Abd Wahab Nur Haninie12,Hasikin Khairunnisa13,Wee Lai Khin1ORCID,Xia Kaijian14,Bei Lulu5,Huang Kai6,Wu Xiang17

Affiliation:

1. Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia

2. Engineering Services Division, Ministry of Health Malaysia, Putrajaya, Malaysia

3. Center of Intelligent Systems for Emerging Technology, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia

4. Affiliated Changshu Hospital, Soochow University Changshu, Jiangsu, China

5. School of Information Engineering, Xuzhou University of Technology, Xuzhou, China

6. JiangSu XCMG HanYun Technologies Co., LTD., Xuzhou, China

7. School of Medical Information & Engineering, Xuzhou Medical University, Xuzhou, China

Abstract

Background Maintaining machines effectively continues to be a challenge for industrial organisations, which frequently employ reactive or premeditated methods. Recent research has begun to shift its attention towards the application of Predictive Maintenance (PdM) and Digital Twins (DT) principles in order to improve maintenance processes. PdM technologies have the capacity to significantly improve profitability, safety, and sustainability in various industries. Significantly, precise equipment estimation, enabled by robust supervised learning techniques, is critical to the efficacy of PdM in conjunction with DT development. This study underscores the application of PdM and DT, exploring its transformative potential across domains demanding real-time monitoring. Specifically, it delves into emerging fields in healthcare, utilities (smart water management), and agriculture (smart farm), aligning with the latest research frontiers in these areas. Methodology Employing the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) criteria, this study highlights diverse modeling techniques shaping asset lifetime evaluation within the PdM context from 34 scholarly articles. Results The study revealed four important findings: various PdM and DT modelling techniques, their diverse approaches, predictive outcomes, and implementation of maintenance management. These findings align with the ongoing exploration of emerging applications in healthcare, utilities (smart water management), and agriculture (smart farm). In addition, it sheds light on the critical functions of PdM and DT, emphasising their extraordinary ability to drive revolutionary change in dynamic industrial challenges. The results highlight these methodologies’ flexibility and application across many industries, providing vital insights into their potential to revolutionise asset management and maintenance practice for real-time monitoring. Conclusions Therefore, this systematic review provides a current and essential resource for academics, practitioners, and policymakers to refine PdM strategies and expand the applicability of DT in diverse industrial sectors.

Funder

Malaysian Ministry of Health and the Hadiah Latihan Persekutuan (HLP) Scholarship

Publisher

PeerJ

Reference138 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3