An integrated platform for intuitive mathematical programming modeling using LaTeX

Author:

Triantafyllidis Charalampos P.12,Papageorgiou Lazaros G.1

Affiliation:

1. Centre for Process Systems Engineering, Department of Chemical Engineering, University College London, London, United Kingdom

2. Smith School of Enterprise and the Environment, University of Oxford, Oxford, United Kingdom

Abstract

This paper presents a novel prototype platform that uses the same LaTeX mark-up language, commonly used to typeset mathematical content, as an input language for modeling optimization problems of various classes. The platform converts the LaTeX model into a formal Algebraic Modeling Language (AML) representation based on Pyomo through a parsing engine written in Python and solves by either via NEOS server or locally installed solvers, using a friendly Graphical User Interface (GUI). The distinct advantages of our approach can be summarized in (i) simplification and speed-up of the model design and development process (ii) non-commercial character (iii) cross-platform support (iv) easier typo and logic error detection in the description of the models and (v) minimization of working knowledge of programming and AMLs to perform mathematical programming modeling. Overall, this is a presentation of a complete workable scheme on using LaTeX for mathematical programming modeling which assists in furthering our ability to reproduce and replicate scientific work.

Funder

Leverhulme Trust under Grant

UK Engineering and Physical Sciences Research Council

Publisher

PeerJ

Subject

General Computer Science

Reference31 articles.

1. The Traveling Salesman Problem

2. AIMMS language reference;Bisschop,2011

3. The impact of linear optimization on promotion planning;Cohen;Operations Research,2017

4. Jump: a modeling language for mathematical optimization;Dunning;SIAM Review,2017

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3