Enhanced industrial text classification via hyper variational graph-guided global context integration

Author:

Zhang Geng1,Hu Jianpeng1

Affiliation:

1. School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai, Songjiang, China

Abstract

Background Joint local context that is primarily processed by pre-trained models has emerged as a prevailing technique for text classification. Nevertheless, there are relatively few classification applications on small sample of industrial text datasets. Methods In this study, an approach of employing global enhanced context representation of the pre-trained model to classify industrial domain text is proposed. To achieve the application of the proposed technique, we extract primary text representations and local context information as embeddings by leveraging the BERT pre-trained model. Moreover, we create a text information entropy matrix through statistical computation, which fuses features to construct the matrix. Subsequently, we adopt BERT embedding and hyper variational graph to guide the updating of the existing text information entropy matrix. This process is subjected to iteration three times. It produces a hypergraph primary text representation that includes global context information. Additionally, we feed the primary BERT text feature representation into capsule networks for purification and expansion as well. Finally, the above two representations are fused to obtain the final text representation and apply it to text classification through feature fusion module. Results The effectiveness of this method is validated through experiments on multiple datasets. Specifically, on the CHIP-CTC dataset, it achieves an accuracy of 86.82% and an F1 score of 82.87%. On the CLUEEmotion2020 dataset, the proposed model obtains an accuracy of 61.22% and an F1 score of 51.56%. On the N15News dataset, the accuracy and F1 score are 72.21% and 69.06% respectively. Furthermore, when applied to an industrial patent dataset, the model produced promising results with an accuracy of 91.84% and F1 score of 79.71%. All four datasets are significantly improved by using the proposed model compared to the baselines. The evaluation result of the four dataset indicates that our proposed model effectively solves the classification problem.

Funder

The National Key Research and Development Program of China

Publisher

PeerJ

Reference38 articles.

1. A survey of text classification algorithms;Aggarwal,2012

2. Recognition of off-line isolated handwritten character using counter propagation network;Bangyal;International Journal of Engineering and Technology,2013

3. Optimization of neural network using improved bat algorithm for data classification;Bangyal;Journal of Medical Imaging and Health Informatics,2019

4. An attentive survey of attention models;Chaudhari;ACM Transactions on Intelligent Systems and Technology (TIST),2021

5. Support-vector networks;Cortes;Machine Learning,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3