Architecture design of a reinforcement environment for learning sign languages

Author:

Naranjo-Zeledón Luis12,Chacón-Rivas Mario1ORCID,Peral Jesús2ORCID,Ferrández Antonio2

Affiliation:

1. Inclutec, Costa Rica Institute of Technology, Cartago, Costa Rica

2. Department of Languages and Computing Systems, University of Alicante, Alicante, Spain

Abstract

Different fields such as linguistics, teaching, and computing have demonstrated special interest in the study of sign languages (SL). However, the processes of teaching and learning these languages turn complex since it is unusual to find people teaching these languages that are fluent in both SL and the native language of the students. The teachings from deaf individuals become unique. Nonetheless, it is important for the student to lean on supportive mechanisms while being in the process of learning an SL. Bidirectional communication between deaf and hearing people through SL is a hot topic to achieve a higher level of inclusion. However, all the processes that convey teaching and learning SL turn difficult and complex since it is unusual to find SL teachers that are fluent also in the native language of the students, making it harder to provide computer teaching tools for different SL. Moreover, the main aspects that a second language learner of an SL finds difficult are phonology, non-manual components, and the use of space (the latter two are specific to SL, not to spoken languages). This proposal appears to be the first of the kind to favor the Costa Rican Sign Language (LESCO, for its Spanish acronym), as well as any other SL. Our research focus stands on reinforcing the learning process of final-user hearing people through a modular architectural design of a learning environment, relying on the concept of phonological proximity within a graphical tool with a high degree of usability. The aim of incorporating phonological proximity is to assist individuals in learning signs with similar handshapes. This architecture separates the logic and processing aspects from those associated with the access and generation of data, which makes it portable to other SL in the future. The methodology used consisted of defining 26 phonological parameters (13 for each hand), thus characterizing each sign appropriately. Then, a similarity formula was applied to compare each pair of signs. With these pre-calculations, the tool displays each sign and its top ten most similar signs. A SUS usability test and an open qualitative question were applied, as well as a numerical evaluation to a group of learners, to validate the proposal. In order to reach our research aims, we have analyzed previous work on proposals for teaching tools meant for the student to practice SL, as well as previous work on the importance of phonological proximity in this teaching process. This previous work justifies the necessity of our proposal, whose benefits have been proved through the experimentation conducted by different users on the usability and usefulness of the tool. To meet these needs, homonymous words (signs with the same starting handshape) and paronyms (signs with highly similar handshape), have been included to explore their impact on learning. It allows the possibility to apply the same perspective of our existing line of research to other SL in the future.

Funder

Spanish Ministry of Science, Innovation and Universities

Spanish Ministry of Science and Innovation

Project INTEGER

Conselleria de Educación, Investigación, Cultura y Deporte of the Community of Valencia, Spain

School of Computing and the Computer Research Center at Costa Rica Institute of Technology and CONICIT (Consejo Nacional para Investigaciones Científicas y Tecnológicas), Costa Rica

Publisher

PeerJ

Subject

General Computer Science

Reference36 articles.

1. Proposal for an interactive software system design for learning Mexican sign language with leap motion;Álvarez-Robles,2020

2. Lexical access. In APA dictionary of psychology;American Psychological Association,2022

3. The Linguistics of Sign Languages

4. Dissimilarity measures between fuzzy sets or fuzzy structures;Bhutani;Information Sciences,2003

5. Data clustering using efficient similarity measures;Bisandu;Journal of Statistics and Management Systems,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3