Towards a Bidirectional Mexican Sign Language–Spanish Translation System: A Deep Learning Approach

Author:

González-Rodríguez Jaime-Rodrigo1ORCID,Córdova-Esparza Diana-Margarita1ORCID,Terven Juan2ORCID,Romero-González Julio-Alejandro1ORCID

Affiliation:

1. Facultad de Informática, Universidad Autónoma de Querétaro, Campus Juriquilla, Av. de las Ciencias S/N, Juriquilla C.P. 76230, Querétaro, Mexico

2. Instituto Politécnico Nacional, CICATA—Unidad Querétaro, Cerro Blanco No. 141, Col, Colinas del Cimatario C.P. 76090, Querétaro, Mexico

Abstract

People with hearing disabilities often face communication barriers when interacting with hearing individuals. To address this issue, this paper proposes a bidirectional Sign Language Translation System that aims to bridge the communication gap. Deep learning models such as recurrent neural networks (RNN), bidirectional RNN (BRNN), LSTM, GRU, and Transformers are compared to find the most accurate model for sign language recognition and translation. Keypoint detection using MediaPipe is employed to track and understand sign language gestures. The system features a user-friendly graphical interface with modes for translating between Mexican Sign Language (MSL) and Spanish in both directions. Users can input signs or text and obtain corresponding translations. Performance evaluation demonstrates high accuracy, with the BRNN model achieving 98.8% accuracy. The research emphasizes the importance of hand features in sign language recognition. Future developments could focus on enhancing accessibility and expanding the system to support other sign languages. This Sign Language Translation System offers a promising solution to improve communication accessibility and foster inclusivity for individuals with hearing disabilities.

Funder

IPN-SIP

Publisher

MDPI AG

Reference48 articles.

1. Special issue on sign language translation and avatar technology;Wolfe;Univers. Access Inf. Soc.,2023

2. (2023, May 25). Welcome to the SIGN-HUB Platform. Available online: https://thesignhub.eu/.

3. Valli, C., and Lucas, C. (2000). Linguistics of American Sign Language: An Introduction, Gallaudet University Press.

4. The Stanford Achievement Test: National norming and performance standards for deaf and hard-of-hearing students;Traxler;J. Deaf. Stud. Deaf. Educ.,2000

5. Prototipo de guantes traductores de la lengua de señas mexicana para personas con discapacidad auditiva y del habla;Ruvalcaba;Mem. Congr. Nac. Ing. Biomédica,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3