An intelligent diabetes classification and perception framework based on ensemble and deep learning method

Author:

Waqas Khan Qazi1,Iqbal Khalid2ORCID,Ahmad Rashid23,Rizwan Atif1,Nawaz Khan Anam1,Kim DoHyeun1

Affiliation:

1. Department of Computer Engineering, Jeju National University, South Korea, Jeju-si, Jeju, South Korea

2. Department of Computer Science, COMSATS University Islamabad, Attock Campus, Attock, Punjab, Pakistan

3. Bigdata Research Center, Jeju National University, Jeju-si, Jeju, South Korea

Abstract

Sugar in the blood can harm individuals and their vital organs, potentially leading to blindness, renal illness, as well as kidney and heart diseases. Globally, diabetic patients face an average annual mortality rate of 38%. This study employs Chi-square, mutual information, and sequential feature selection (SFS) to choose features for training multiple classifiers. These classifiers include an artificial neural network (ANN), a random forest (RF), a gradient boosting (GB) algorithm, Tab-Net, and a support vector machine (SVM). The goal is to predict the onset of diabetes at an earlier age. The classifier, developed based on the selected features, aims to enable early diagnosis of diabetes. The PIMA and early-risk diabetes datasets serve as test subjects for the developed system. The feature selection technique is then applied to focus on the most important and relevant features for model training. The experiment findings conclude that the ANN exhibited a spectacular performance in terms of accuracy on the PIMA dataset, achieving a remarkable accuracy rate of 99.35%. The second experiment, conducted on the early diabetes risk dataset using selected features, revealed that RF achieved an accuracy of 99.36%. Based on our experimental results, it can be concluded that our suggested method significantly outperformed baseline machine learning algorithms already employed for diabetes prediction on both datasets.

Funder

Institute for Information and Communications Technology Promotion

Brain Pool Program funded by the Ministry of Science and ICT through the National Research Foundation of Korea

2023 Scientific Promotion Program funded by Jeju National University

Publisher

PeerJ

Reference45 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent advancements using machine learning & deep learning approaches for diabetes detection: a systematic review;e-Prime - Advances in Electrical Engineering, Electronics and Energy;2024-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3