Implementation of Synthetic Minority Oversampling Technique and Two-phase Mutation Grey Wolf Optimization on Early Diagnosis of Diabetes using K-Nearest Neighbors

Author:

Arsyadani Fathan,Purwinarko Aji

Abstract

Abstract. Diabetes is a disease attacking the endocrine system characterized by high blood sugar levels. International Diabetes Federation (IDF) estimates that there were 451 million people with diabetes globally in 2017. Without treatment, this number is expected to rise to 693 million by 2045.  One method for preventing increases in the number of diabetics is by early diagnosis. In an era where technology has developed rapidly, early diagnosis can be made with the machine learning method using classification. In this study, we propose a diabetes classification using K-Nearest Neighbors (KNN). Before classifying the data, we select the best feature subset from the dataset using Two-phase Mutation Grey Wolf Optimization (TMGWO) and balance the training data using Synthetic Minority Oversampling Technique (SMOTE). After dividing the dataset into training and testing sets using 10-fold cross validation, we reached an accuracy of 98.85% using the proposed method. Purpose: This study aims to understand how to apply TMGWO and SMOTE to classify the early stage diabetes risk prediction dataset using KNN and how it affects the results. Methods/Study design/approach: In this study, we use TMGWO to make a feature selection on the dataset, K-fold cross validation to split the dataset into training and testing sets, SMOTE to balance the training data, and KNN to perform the classification. The desired results in this study are accuracy, precision, recall, and f1-score. Result/Findings: Performing classification using KNN with only features selected by TMGWO and balancing the training data using SMOTE gives an accuracy rate of 98.85%. From the results of this research, it can be concluded that the proposed algorithm can give higher accuracy compared to previous studies. Novelty/Originality/Value: Implementing TMGWO to perform feature selection so the model can perform classification with fewer features and implementing SMOTE to balance the training data so the model can better classify the minority class. By doing classification using fewer features, the model can perform classification with a shorter computational time compared to using all features in the dataset.

Publisher

Universitas Negeri Semarang

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3