Abstract
Forecasting the stock market trend and movement is a challenging task due to multiple factors, including the stock’s natural volatility and nonlinearity. It concerns discovering the market’s hidden patterns with respect to time to enable proactive decision-making and better futuristic insights. Recurrent neural network-based methods have been a prime candidate for solving complex and nonlinear sequences, including the task of modeling multivariate time series forecasts. Due to the lack of comprehensive and reference work in short-term forecasts for the Saudi stock price and trends, this article introduces a comprehensive and accurate forecasting methodology tailored to the Saudi stock market. Two steps were configured to render effective short-term forecasts. First, a custom-built feature engineering streamline was constructed to preprocess the raw stock data and enable financial-related technical indicators, followed by a stride-based sliding window to produce multivariate time series data ready for the modeling phase. Second, a well-architected Gated Recurrent Unit (GRU) model was constructed and carefully calibrated to yield accurate multi-step forecasts, which was trained using the recently published historical multivariate time-series data from the primary Saudi stock market index (TASI index), in addition to being benchmarked against a suitable baseline model, namely Vector Autoregression Moving-Average with Exogenous Regressors (VARMAX). The output predictions from the proposed GRU model and the VARMAX model were evaluated using a set of regression-based metrics to assess and interpret the model precision. The empirical results demonstrate that the proposed methodology yields outstanding short-term forecasts of the Saudi stock price trends price compared to existing efforts related to this work.
Reference66 articles.
1. The predictability of the amman stock exchange using the univariate autoregressive integrated moving average (ARIMA) model;Al-Shiab;Journal of Economic and Administrative Sciences,2006
2. Predicting Saudi stock market index by incorporating GDELT using multivariate time series modelling;Alamro,2019
3. ARIMA model in predicting banking stock market data;Almasarweh;Modern Applied Science,2018
4. Saudi Arabia stock market prediction using neural network;Alotaibi;International Journal on Computer Science and Engineering,2018
5. Cost-sensitive prediction of stock price direction: selection of technical indicators;Alsubaie;IEEE Access,2019
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献