Effective short-term forecasts of Saudi stock price trends using technical indicators and large-scale multivariate time series

Author:

Aseeri Ahmad O.

Abstract

Forecasting the stock market trend and movement is a challenging task due to multiple factors, including the stock’s natural volatility and nonlinearity. It concerns discovering the market’s hidden patterns with respect to time to enable proactive decision-making and better futuristic insights. Recurrent neural network-based methods have been a prime candidate for solving complex and nonlinear sequences, including the task of modeling multivariate time series forecasts. Due to the lack of comprehensive and reference work in short-term forecasts for the Saudi stock price and trends, this article introduces a comprehensive and accurate forecasting methodology tailored to the Saudi stock market. Two steps were configured to render effective short-term forecasts. First, a custom-built feature engineering streamline was constructed to preprocess the raw stock data and enable financial-related technical indicators, followed by a stride-based sliding window to produce multivariate time series data ready for the modeling phase. Second, a well-architected Gated Recurrent Unit (GRU) model was constructed and carefully calibrated to yield accurate multi-step forecasts, which was trained using the recently published historical multivariate time-series data from the primary Saudi stock market index (TASI index), in addition to being benchmarked against a suitable baseline model, namely Vector Autoregression Moving-Average with Exogenous Regressors (VARMAX). The output predictions from the proposed GRU model and the VARMAX model were evaluated using a set of regression-based metrics to assess and interpret the model precision. The empirical results demonstrate that the proposed methodology yields outstanding short-term forecasts of the Saudi stock price trends price compared to existing efforts related to this work.

Publisher

PeerJ

Subject

General Computer Science

Reference66 articles.

1. The predictability of the amman stock exchange using the univariate autoregressive integrated moving average (ARIMA) model;Al-Shiab;Journal of Economic and Administrative Sciences,2006

2. Predicting Saudi stock market index by incorporating GDELT using multivariate time series modelling;Alamro,2019

3. ARIMA model in predicting banking stock market data;Almasarweh;Modern Applied Science,2018

4. Saudi Arabia stock market prediction using neural network;Alotaibi;International Journal on Computer Science and Engineering,2018

5. Cost-sensitive prediction of stock price direction: selection of technical indicators;Alsubaie;IEEE Access,2019

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3