Author:
Almasarweh Mohammad,Wadi S. AL
Abstract
Banking time series forecasting gains a main rule in finance and economics which has encouraged the researchers to introduce a fit models in forecasting accuracy. In this paper, the researchers present the advantages of the autoregressive integrated moving average (ARIMA) model forecasting accuracy. Banking data from Amman stock market (ASE) in Jordan was selected as a tool to show the ability of ARIMA in forecasting banking data. Therefore, Daily data from 1993 until 2017 is used for this study. As a result this article shows that the ARIMA model has significant results for short-term prediction. Therefore, these results will be helpful for the investments.
Publisher
Canadian Center of Science and Education
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献