Tandem mass tag-based quantitative proteomic analysis of lycorine treatment in highly pathogenic avian influenza H5N1 virus infection

Author:

Yang Li12,Zhang Jia Hao3,Zhang Xiao Li2,Lao Guang Jie3,Su Guan Ming3,Wang Lei1,Li Yao Lan1,Ye Wen Cai1,He Jun14

Affiliation:

1. Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China

2. College of Life Science and Technology, Jinan University, Guangzhou, China

3. College of Veterinary Medicine, South China Agricultural University, Guangzhou, China

4. Institute of Laboratory Animal Science, Jinan University, Guangzhou, China

Abstract

Highly pathogenic H5N1 influenza viruses (HPAIV) cause rapid systemic illness and death in susceptible animals, leading to a disease with high morbidity and mortality rates. Although vaccines and drugs are the best solution to prevent this threat, a more effective treatment for H5 strains of influenza has yet to be developed. Therefore, the development of therapeutics/drugs that combat H5N1 influenza virus infection is becoming increasingly important. Lycorine, the major component of Amaryllidaceae alkaloids, exhibits better protective effects against A/CK/GD/178/04 (H5N1) (GD178) viruses than the commercial neuraminidase (NA) inhibitor oseltamivir in our prior study. Lycorine demonstrates outstanding antiviral activity because of its inhibitory activity against the export of viral ribonucleoprotein complexes (vRNPs) from the nucleus. However, how lycorine affects the proteome of AIV infected cells is unknown. Therefore, we performed a comparative proteomic analysis to identify changes in protein expression in AIV-infected Madin-Darby Canine Kidney cells treated with lycorine. Three groups were designed: mock infection group (M), virus infection group (V), and virus infection and lycorine-treated after virus infection group (L). The multiplexed tandem mass tag (TMT) approach was employed to analyze protein level in this study. In total, 5,786 proteins were identified from the three groups of cells by using TMT proteomic analysis. In the V/M group, 1,101 proteins were identified, of which 340 differentially expressed proteins (DEPs) were determined during HPAIV infection; among the 1,059 proteins identified from the lycorine-treated group, 258 proteins presented significant change. Here, 71 proteins showed significant upregulation or downregulation of expression in the virus-infected/mock and virus-infected/lycorine-treated comparisons, and the proteins in each fraction were functionally classified further. Interestingly, lycorine treatment decreased the levels of the nuclear pore complex protein 93 (Nup93, E2RSV7), which is associated with nuclear–cytoplasmic transport. In addition, Western blot experiments confirmed that the expression of Nup93 was significantly downregulated in lycorine treatment but induced after viral infection. Our results may provide new insights into how lycorine may trap vRNPs in the nucleus and suggest new potential therapeutic targets for influenza virus.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3