DoAP2/ERF89 activated the terpene synthase gene DoPAES in Dendrobium officinale and participated in the synthesis of β-patchoulene

Author:

Li Decong1,Liu Lin1,Li Xiaohong1,Wei Guo2,Cai Yongping1,Sun Xu1,Fan Honghong1

Affiliation:

1. School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China

2. College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, China

Abstract

Dendrobium officinale Kimura et Migo is a tonic plant that has both ornamental and medicinal properties. Terpenoids are significant and diverse secondary metabolites in plants, and are one of the important natural active ingredients in D. officinale. The AP2/ERF gene family plays a major role in primary and secondary metabolism. However, the AP2/ERF transcription factor family has not been identified in D. officinale, and it is unclear if it is involved in the regulation of terpenoid biosynthesis. This study identified a sesquiterpene synthetase-β-patchoulene synthase (DoPAES) using transcriptome and terpenic metabolic profile analyses. A total of 111 members of the AP2/ERF family were identified through the whole genome of D. officinale. The tissue-specific expression and gene co-expression pattern of the DoAP2/ERF family members were analyzed. The results showed that the expression of DoPAES was highly correlated with the expression of DoAP2/ERF89 and DoAP2/ERF47. The yeast one-hybrid (Y1H) assays and dual-luciferase experiments demonstrated that DoAP2/ERF89 and DoAP2/ERF47 could regulate the expression of DoPAES. The transcriptional regulatory effects were examined using homologous transient expression of DoAP2/ERF89 in protocorms of D. officinale. DoAP2/ERF89 positively regulated the biosynthesis of β-patchoulene. This study showed that DoAP2/ERF89 can bind to the promoter region of DoPAES to control its expression and further regulate the biosynthesis of β-patchoulene in D. officinale. These results provide new insights on the regulation of terpenoid biosynthesis.

Funder

Anhui Natural Science Foundation

Hefei Natural Science Foundation

Anhui Provincial Engineering Technology Research Center for Development & Utilization of Regional Characteristic Plants

Publisher

PeerJ

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3