Metabolic and Transcriptomic Profile Revealing the Differential Accumulating Mechanism in Different Parts of Dendrobium nobile

Author:

Zhao Ruoxi1,Yan Shou12,Hu Yadong1,Rao Dan13,Li Hongjie13,Chun Ze1,Zheng Shigang1ORCID

Affiliation:

1. Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China

2. Hejiang Public Inspection and Testing Center, Sichuan Quality Supervision and Inspection Center for Se-rich and Zn-rich Products, Luzhou 646200, China

3. College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100041, China

Abstract

Dendrobium nobile is an important orchid plant that has been used as a traditional herb for many years. For the further pharmaceutical development of this resource, a combined transcriptome and metabolome analysis was performed in different parts of D. nobile. First, saccharides, organic acids, amino acids and their derivatives, and alkaloids were the main substances identified in D. nobile. Amino acids and their derivatives and flavonoids accumulated strongly in flowers; saccharides and phenols accumulated strongly in flowers and fruits; alkaloids accumulated strongly in leaves and flowers; and a nucleotide and its derivatives and organic acids accumulated strongly in leaves, flowers, and fruits. Simultaneously, genes for lipid metabolism, terpenoid biosynthesis, and alkaloid biosynthesis were highly expressed in the flowers; genes for phenylpropanoids biosynthesis and flavonoid biosynthesis were highly expressed in the roots; and genes for other metabolisms were highly expressed in the leaves. Furthermore, different members of metabolic enzyme families like cytochrome P450 and 4-coumarate-coA ligase showed differential effects on tissue-specific metabolic accumulation. Members of transcription factor families like AP2-EREBP, bHLH, NAC, MADS, and MYB participated widely in differential accumulation. ATP-binding cassette transporters and some other transporters also showed positive effects on tissue-specific metabolic accumulation. These results systematically elucidated the molecular mechanism of differential accumulation in different parts of D. nobile and enriched the library of specialized metabolic products and promising candidate genes.

Funder

Sichuan Science and Technology Program

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3