Harnessing the power of comparative genomics to support the distinction of sister species within Phyllosticta and development of highly specific detection of Phyllosticta citricarpa causing citrus black spot by real-time PCR

Author:

Ioos Renaud1ORCID,Puertolas Alexandra12,Renault Camille12,Ndiaye Aida1,Cerf-Wendling Isabelle1,Hubert Jacqueline1,Wang Wen3,Jiao Chen3,Li Hongye3,Armengol Josep4,Aguayo Jaime1

Affiliation:

1. Laboratoire de la Santé des Végétaux, Unité de Mycologie, USC INRAE, ANSES, Malzéville, France

2. ANSES, European Union Reference Laboratory on Plant Pathogenic Fungi and Oomycetes, Malzéville, France

3. The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Zhejiang, Hangzhou, China

4. Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Valencia, Spain

Abstract

Citrus crops are affected by many fungal diseases. Among them, Citrus Black Spot caused by the ascomycete Phyllosticta citricarpa is particularly economically damaging wherever it occurs. Many other species of Phyllosticta are described on Citrus, but only P. citricarpa is considered a quarantine pest on the European continent. In order to prevent the introduction of this species into Europe, it is essential to have a detection test which can reliably identify it, and not confuse it with other species present on citrus, notably P. paracitricarpa. The latter taxon has recently been described as very close to P. citricarpa, and most detection tests do not allow to distinguish the two species. In this work, we exploited the genomic data of 37 isolates of Phyllosticta spp. from citrus, firstly to assess their phylogenetic relationships, and secondly to search for genomic regions that allowed the definition of species-specific markers of P. citricarpa. Analysis of 51 concatenated genes separated P. citricarpa and P. paracitricarpa in two phylogenetic clades. A locus was selected to define a hydrolysis probe and primers combination that could be used in real-time PCR for the specific detection of the quarantine species, to the exclusion of all others present on Citrus. This test was then thoroughly validated on a set of strains covering a wide geographical diversity, and on numerous biological samples to demonstrate its reliability for regulatory control. The validation data highlighted the need to check the reliability of the test in advance, when a change of reagents was being considered.

Funder

ANSES Plant Health Laboratory

French National Research Agency

French government’s “Investing for the Future” (PIA) program

EU Grant

European Union Reference Laboratory’s Work Program on Fungi Pathogenic to Plants

National Natural Science Foundation of China

China Agriculture Research System

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3