DNA mini-barcoding reveals the mislabeling rate of canned cat food in Taiwan

Author:

Wang Yu-Chun12,Liu Shih-Hui3ORCID,Ho Hsuan Ching4,Su Hsiao-Yin5,Chang Chia-Hao5

Affiliation:

1. Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan

2. Technical Service Division, Fisheries Research Institute, Keelung, Taiwan

3. Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan

4. Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan

5. Department of Science Education, National Taipei University of Education, Taipei, Taiwan

Abstract

Background Domestic cats are important companion animals in modern society that live closely with their owners. Mislabeling of pet food can not only harm pets but also cause issues in areas such as religious beliefs and natural resource management. Currently, the cat food market is booming. However, despite the risk that mislabeling poses to cats and humans, few studies have focused on species misrepresentation in cat food products. Methods To address this issue, we used DNA barcoding, a highly effective identification methodology that can be applied to even highly processed products. We targeted a short segment (~85 basepairs) of the mitochondrial 16S rRNA (16S) gene as a barcode and employed Sanger or next generation sequencing (NGS) to inspect 138 canned cat food products in the Taiwanese market. Results We discovered that the majority of mislabeling incidents were related to replacement of tuna with other species. Moreover, our metabarcoding revealed that numerous undeclared ingredients were present in all examined canned products. One product contained CITES Appendix II-listed shortfin mako shark (Isurus oxyrinchus). Overall, we uncovered a mislabeling rate of at least 28.99%. To verify cases of mislabeling, an official standardized list of vernacular names, along with the corresponding scientific species names, as well as a dependable barcoding reference sequence database are necessary.

Funder

National Science and Technology Council, Taiwan

Publisher

PeerJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3