Affiliation:
1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin, China
2. College of Forestry, Shenyang Agricultual University, Shenyang, China
3. Guangxi Fangcheng Golden Camellias National Nature Reserve, Fangchenggang, China
Abstract
Background
Soil microbial community diversity serves as a highly sensitive indicator for assessing the response of terrestrial ecosystems to various changes, and it holds significant ecological relevance in terms of indicating ecological alterations. At the global scale, vegetation type acts as a major driving force behind the diversity of soil microbial communities, encompassing both bacterial and fungal components. Modifications in vegetation type not only induce transformations in the visual appearance of land, but also influence the soil ecosystem’s material cycle and energy flow, resulting in substantial impacts on the composition and performance of soil microbes.
Methods
In order to examine the disparities in the structure and diversity of soil microbial communities across distinct vegetation types, we opted to utilize sample plots representing four specific vegetation types. These included a woodland with the dominant tree species Drypetes perreticulata, a woodland with the dominant tree species Horsfieldia hainanensis, a Zea mays farmland and a Citrus reticulata fields. Through the application of high-throughput sequencing, the 16S V3_V4 region of soil bacteria and the ITS region of fungi were sequenced in this experiment. Subsequently, a comparative analysis was conducted to explore and assess the structure and dissimilarities of soil bacterial and fungal communities of the four vegetation types were analyzed comparatively.
Results
Our findings indicated that woodland soil exhibit a higher richness of microbial diversity compared to farmland soils. There were significant differences between woodland and farmland soil microbial community composition. However, all four dominant phyla of soil fungi were Ascomycota across the four vegetation types, but the bacterial dominant phyla were different in the two-farmland soil microbial communities with the highest similarity. Furthermore, we established a significant correlation between the nutrient content of different vegetation types and the relative abundance of soil microorganisms at both phyla and genus levels. This experiment serves as a crucial step towards unraveling the intricate relationships between plants, soil microbes, and soil, as well as understanding the underlying driving mechanism.
Funder
National Natural Science Foundation of China
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献