Vertical distribution characteristics of soil organic carbon and vegetation types under different elevation gradients in Cangshan, Dali

Author:

Yang Xue12,Xu Jianhong12,Wang Huifang12,Quan Hong12,Yu Huijuan12,Luan Junda12,Wang Dishan12,Li Yuancheng123,Lv Dongpeng12

Affiliation:

1. College of Agronomy and Biological Sciences, Dali University, Dali, Yunnan, China

2. Key Laboratory of Ecological Microbial Remediation Technology of Yunnan Higher Education Institutes, Dali University, Dali, Yunnan, China

3. Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan, China

Abstract

Background The Cangshan National Nature Reserve of Dali City was adopted as the research object to clarify the vertical distribution characteristics of soil organic carbon (SOC) and vegetation types at different elevations in western Yunnan. Methods The contents of SOC, light fraction organic carbon (LFOC), heavy fraction organic carbon (HFOC), and water-soluble organic carbon (WSOC) in the 0–30 cm soil layer at different elevations (2,400, 2,600, 2,800, 3,000, 3,200, 3,400, and 3,600 m) were determined, and the above-ground vegetation types at different elevations were investigated. Results Results showed that the SOC content was the highest in 0–20 cm surface soil and gradually decreased with the deepening of the soil layer. It increased then decreased with the increase in elevation, and it peaked at 3,000 m. The LFOC content was between 1.28 and 7.3515 g kg−1. It exhibited a decreasing trend and little change in profile distribution. The HFOC content ranged between 12.9727 and 23.3708 g kg−1; it increased then decreased with the increase in profile depth. The WSOC content was between 235.5783 and 392.3925 mg kg−1, and the response sensitivity to elevation change was weak. With the increase in elevation, WSOC/SOC and LFOC/SOC showed a similar trend, whereas HFOC presented an opposite trend. This observation indicates that the active organic carbon content at 3,600 m was lower than that at 2,400 m, and the middle elevation was conducive to the storage of active organic carbon. Meanwhile, the physical and chemical properties of soil affected the distribution of organic carbon to a certain extent. The vegetation type survey showed that the above-ground dominant species within 2,400–2,800 m were Pinus yunnanensis and Pinus armandii. Many evergreen and mixed coniferous broadleaf forests were distributed from 3,000 m to 3,200 m. Species of Abies delavayi were mainly distributed from 3,400 m to 3,600 m. This research serves as a reference for the study of forest soil carbon stability in high-elevation areas and plays an important role in formulating reasonable land use management policies, protecting forest soil, reducing organic carbon loss, and investigating the carbon sequestration stability of forest ecosystems.

Funder

Research Project on Ecosystem Service Function of Tailwater Wetland in the Three River Merging Area

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3