Staged combustion concept for gas turbines

Author:

Winkler Dieter1,Geng Weiqun1,Engelbrecht Geoffrey1,Stuber Peter1,Knapp Klaus2,Griffin Timothy1

Affiliation:

1. 1FHNW, School of Engineering, University of Applied Sciences and Arts Northwestern Switzerland, 5210 Windisch, Switzerland

2. 2Ansaldo Energia Switzerland Ltd., 5401 Baden, Switzerland

Abstract

AbstractGas turbine power plants with high load flexibility are particularly suitable to compensate power fluctuations of wind and solar plants. Conventional gas turbines suffer from higher emissions at low load operation. With the objective of improving this situation a staged combustion system has been investigated. At low gas turbine load an upstream stage (first stage) provides stable combustion at low emissions while at higher loads the downstream stage (second stage) is started to supplement the power. Three injection geometries have been studied by means of computational fluid dynamics (CFD) simulations and atmospheric tests. The investigated geometries were a simple annular gap, a jet-in-cross-flow configuration and a lobe mixer. With CFD simulations the quality of mixing of second stage fresh gas with first stage exhaust gas was assessed. The lobe mixer showed the best mixing quality and hence was expected to also be the best variant in terms of combustion. However atmospheric combustion tests showed lower emissions for the jet-in-cross-flow configuration. Comparing flame photos in the visible and ultraviolet (UV) range suggest that the flame might be lifted off for the lobe mixer, leading to insufficient time for carbon monoxide (CO) burnout. CFD analysis of turbulent flame speed, turbulence and strain rates support the hypotheses of lifted off flame. Overall the staged concept was found to show very promising results not only with natural gas but also with natural gas enriched with propane or hydrogen. The investigations showed that apart from having an efficient and compact mixing of the two stages it is also very important to design the flow field such that the second flame can be anchored properly in order to achieve compact flames with sufficient time for CO burnout.

Funder

We would like to thank the Swiss Federal Office of Energy (BFE), and Ansaldo Energia Switzerland for their support and cooperation.

Publisher

Global Power and Propulsion Society

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3