Low Level Laser Therapy With an 810-nm Diode Laser Affects the Proliferation and Differentiation of Premature Osteoblasts and Human Gingival Fibroblasts In Vitro

Author:

Bourouni Ioanna1ORCID,Kyriakidou Kyriaki1ORCID,Fourmousis Ioannis1ORCID,Vrotsos Ioannis A.1ORCID,Karoussis Ioannis K.1ORCID

Affiliation:

1. Department of Periodontology, School of Dentistry, National and Kapodistrian University of Athens, Thivon 2 str, Goudi, 115 27 Athens, Greece

Abstract

Introduction: Photomodulation is a promising strategy for optimizing tissue healing, but its photomodulatory effects on the synergistic cellular metabolism of gingival and bony tissues remain largely unknown. The aim of the present study was to evaluate the photomodulatory effects of a diode laser (810 nm) on osteoblasts, HGFs and their co-cultures in vitro. Methods: Primary cultures of HGFs, cultures of immature osteoblastic cells (MG63) and their co-cultures were irradiated with a diode laser (810 nm), 15 J/cm2 . Cell cultures were examined for cellular proliferation (MTT assay), viability (FDA/PI staining) after 24, 48 and 72 hours and cell differentiation (qPCR of collagen type 1a – COL1a and alkaline phosphatase expressions - ALP) after 7 days. Results: Photomodulation with an 810-nm diode laser increased cell proliferation at all time points. COL1a gene expression increased both in HGF and co-cultures. ALP expression was up-regulated in osteoblastic cultures, but co-cultures with fibroblasts negated this response. Conclusion: The 810-nm diode laser positively affected cell proliferation and viability in all experimental groups. The statistically significant increased COL1a gene expression at 7 days after irradiation both in the irradiated HGF and co-cultures suggests that low-level laser therapy (LLLT) stimulated extracellular matrix (ECM) formation signaling in both cell types.

Publisher

Maad Rayan Publishing Company

Subject

Urology,Nephrology,Dermatology,Dentistry (miscellaneous),Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3