Effect of Low-Level Laser Irradiation (810 nm) on the Proliferation and Differentiation of Osteoblast-Like Cells Cultured on SLA Titanium Discs Exposed to a Peri-implantitis Environment

Author:

Zampa Evangelia P.1ORCID,Kyriakidou Kyriaki1ORCID,Papaparaskevas Joseph2ORCID,Pepelassi Eudoxie1ORCID,Karoussis Ioannis K.1ORCID

Affiliation:

1. Department of Periodontology, School of Dentistry, National and Kapodistrian University of Athens, Thivon 2 Str, Goudi, 115 27, Athens, Greece

2. Department of Microbiology, School of Medicine, National and Kapodistrian University of Athens, M.Asias 75, 115 27, Athens, Greece

Abstract

Introduction: Elimination of inflammation and re-osseointegration are the major objectives of peri-implantitis therapy. Existing data, however, do not support any decontamination approach. Thus, the present in vitro study aims to assess whether the air-debriding decontamination method with erythritol powder restores the biocompatibility of infected titanium discs and to investigate the potent biomodulatory ability of diode laser (810 nm) irradiation to promote cell proliferation and differentiation of premature osteoblast-like cells (MG63) towards osteocytes. Methods: The experimental groups consisted of cells seeded on titanium discs exposed or not in a peri-implantitis environment with or without biomodulation. Infected discs were cleaned with airflow with erythritol powder. Cell cultures seeded on tricalcium phosphate (TCP) surfaces with or without biomodulation with a laser (810 nm) were used as controls. The study evaluated cell viability, proliferation, adhesion (SEM) at 24, 48 and 72 hours, and surface roughness changes (profilometry), as well as the effects of low-level laser therapy (LLLT) on ALP, OSC, TGF-b1, Runx2, and BMP-7 expression in MG63 cells’ genetic profile on days 7, 14, and 21. Results: The MTT assay as well as the FDA/PI method revealed that cell proliferation did not show significant differences between sterile and decontaminated discs at any timepoint. SEM photographs on day 7 showed that osteoblast-like cells adhered to both sterile and disinfected surfaces, while surface roughness did not change based on amplitude parameters. The combination of airflow and LLLT revealed a biomodulated effect on the differentiation of osteoblast-like cells with regard to the impact of laser irradiation on the genetic profile of the MG63 cells. Conclusion: In all groups tested, osteoblast-like cells were able to colonize, proliferate, and differentiate, suggesting a restoration of biocompatibility of infected discs using airflow. Furthermore, photomodulation may promote the differentiation of osteoblast-like cells cultured on both sterile and disinfected titanium surfaces.

Publisher

Maad Rayan Publishing Company

Subject

Urology,Nephrology,Dermatology,Dentistry (miscellaneous),Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3