An end-to-end synthesis method for Korean text-to-speech systems

Author:

Choi Yeunju,Jung Youngmoon,Kim Younggwan,Suh Youngjoo,Kim Hoirin

Funder

Ministry of Trade, Industry and Energy

Publisher

The Korean Society of Speech Sciences

Subject

Materials Science (miscellaneous)

Reference27 articles.

1. Arik, S., Chrzanowski, M., Coates, A., Diamos, G., Gibiansky, A., Kang, Y., Li, X., Miller, J., Ng, A., Raiman, J., Sengupta, S., & Shoeybi, M. (2017a). Deep Voice: Real-time neural text-to-speech. Proceedings of the 34th International Conference on Machine Learning (pp. 195-204). Sydney, AU. 6-11 August, 2017

2. Arik, S., Diamos, G., Gibiansky, A., Miller, J., Peng, K., Ping, W., Raiman, J., & Zhou, Y. (2017b). Deep Voice 2: Multi-speaker neural text-to-speech. Advances in Neural Information Processing Systems 30 (pp. 2966-2974). Long Beach, CA. 4-9 December, 2017

3. Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. Retrieved from http://arxiv.org/abs/1409.0473 [Computing Research Repository] on January 9, 2018

4. Bengio, Y., Louradour, J., Collobert, R., & Weston, J. (2009). Curriculum learning. Proceedings of the 26th Annual International Conference on Machine Learning (pp. 41-48). 14-18 June, 2009 10.1145/1553374.1553380

5. Cho, K., Van Mrriёnboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. Retrieved from http://arxiv.org/abs/1406.1078 [Computing Research Repository] on January 9, 2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spoken‐to‐written text conversion for enhancement of Korean–English readability and machine translation;ETRI Journal;2024-02

2. A Study on the Voice Security System Using Sensor Technology;2020 IEEE International Conference on Big Data and Smart Computing (BigComp);2020-02

3. Corpus-based evaluation of French text normalization;Phonetics and Speech Sciences;2018-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3