Author:
Jo Cheolwoo,Wang Soo-Geun,Kwon Ickhwan
Funder
Changwon National University
Publisher
The Korean Society of Speech Sciences
Subject
Materials Science (miscellaneous)
Reference26 articles.
1. Aicha, A. B. (2018). Noninvasive detection of potentially
precancerous lesions of vocal fold based on glottal wave signal and SVM
approaches. Procedia Computer Science, 126,
586-595. 10.1016/j.procs.2018.07.293
2. Al-Nasheri, A., Muhammad, G., Alsulaiman, M., Ali, Z., Mesallam, T.
A., Farahat, M., Malki, K. H., ... Bencherif, M. A. (2017). An investigation of
multidimensional voice program parameters in three different databases for voice
pathology detection and classification. Journal of Voice,
31(1), 113.e9-113.e18. 10.1016/j.jvoice.2016.03.019
27105857
3. Bezdek, J. C., Keller, J., Krisnapuram, R., Pal, N. R. (2005).
Fuzzy models and algorithms for pattern recognition and image
processing. (pp. 442-490). New York, NY: Springer.
4. Fang, S. H., Tsao, Y., Hsiao, M. J., Chen, J. Y., Lai, Y. H., Lin,
F. C., & Wang, C. T. (2019). Detection of pathological voice using cepstrum
vectors: A deep learning approach. Journal of Voice,
33(5), 634-641. 10.1016/j.jvoice.2018.02.003
29567049
5. Hegde, S., Shetty, S., Rai, S., & Dodderi, T. (2019). A survey
on machine learning approaches for automatic detection of voice disorders.
Journal of Voice, 33(6), 947.e11-947.e33.
10.1016/j.jvoice.2018.07.014
30316551
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献