1. Altinkaya, M., & Smeulders, A. W. M. (2020, October). A dynamic,
self supervised, large scale audiovisual dataset for stuttered speech.
Proceedings of the 1st International Workshop on Multimodal
Conversational AI (pp. 9-13). Seattle, WA. 10.1145/3423325.3423733
2. Barrett, L., Hu, J., & Howell, P. (2022). Systematic review of
machine learning approaches for detecting developmental stuttering.
IEEE/ACM Transactions on Audio, Speech, and Language Processing,
30, 1160-1172. 10.1109/TASLP.2022.3155295
3. Bayerl, S. P., von Gudenberg, A. W., Hönig, F., Nöth, E., &
Riedhammer, K. (2022, June). KSoF: The Kassel state of fluency dataset – A
therapy centered dataset of stuttering. Proceedings of the 13th
Conference on Language Resources and Evaluation (pp. 1780-1787).
Marseille, France.
4. Bhushan, P. S., Vani, H. Y., Shivkumar, D. K., & Sreeraksha, M.
R. (2021). Stuttered Speech Recognition using Convolutional Neural Networks,
International Journal of Engineering Research &
Technology, 9(12), 250-254.
5. Das, A., Mock, J. Irani, F., Huang, Y., Najafirad, P., & Golob,
E. (2022). Multimodal explainable AI predicts upcoming speech behavior in adults
who stutter. Frontiers in Neuroscience,
16:912798. 10.3389/fnins.2022.912798
35979337
PMC9376608