Biological monitoring of carbon disulphide: kinetics of urinary 2-thiothiazolidine-4-carboxylic acid (TTCA) in exposed workers

Author:

Chang Ho-Yuan1,Chou Tzu-Chieh1,Wang Peng-Yau2,Shih Tung-Sheng3

Affiliation:

1. Graduate Institute of Environmental and Occupational Health, National Cheng Kung University Medical College, 138 Sheng-Li Rd. 70428, Tainan, Taiwan, Republic of China

2. Graduate Institute of Environmental Engineering, National Central University, Chun-Li, Taiwan, Republic of China

3. Institute of Occupational Safety and Health, Council of Labor Affairs, No. 99 Lane 407, Heng-Ke Rd, Shijr City, Taipei, Taiwan, Republic of China,

Abstract

The objectives of this study was to establish the kinetics of urinary 2-thiothiazolidine-4-carboxylic acid (UTTCA) for workers exposed to carbon disulphide (CS2) and to investigate the effects of volume and creatinine adjustment methods for urine measurement. Ten workers in the spinning department of a rayon factory were individually monitored for airborne CS2 concentrations, with consecutive urine samples collected for 24-38 hours after termination of exposure. The U-TTCA, urine volume and creatinine level were measured for each sample. First-order and biphasic kinetics were determined using the curve-fit method, for the measurement series. For the first-order kinetics linearity fit, statistically significant correlation coefficients of 0.74-0.98 and 0.86-0.99 were derived for the volume- and creatinine-adjusted methods, respectively. For the biphasic kinetics approach, the overall correlation coefficients were 0.544-0.999 and 0.171-0.999 for the first and second phases of the creatinine-adjusted method, respectively. A post-shift U-TTCA of 3.0 mg/g Cr. equivalent, 40% below the current BEI setting at nearly PEL exposed level, was found. In conclusion, first-order kinetic response was confirmed for U-TTCA. Both volume- and creatinine-based urine adjustment are satisfactory for TTCA assessment as a biomarker of individual CS2 exposure although the correlation for creatinine-based measurement was modestly superior to the volume-based analogue. Based on the results of this study, we recommend a re-evaluation of the current biological exposure index of 5 mg/g creatinine at a CS2 exposure level of 10 ppm.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3