Measurement of CS2 Absorption Cross-Sections in the 188–215 nm Region at Room Temperature and Atmospheric Pressure

Author:

Zhang Yungang1ORCID,Wang Yongda1,Liu Yunjie1,Ai Xinyu2,Zhang Zhiguo2,Li Jimeng1

Affiliation:

1. College of Electrical Engineering, Yanshan University, Qinhuangdao, China

2. School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, China

Abstract

Carbon disulfide, an important sulfur-containing species, has strong absorption lines in the wavelength range of 188 nm to 215 nm. It is difficult to accurately measure the absorption cross sections of carbon disulfide because carbon disulfide will be easily converted into carbon sulfide when it is exposed to ultraviolet light. In this study, the absorption cross sections of carbon disulfide were measured by reducing carbon disulfide conversion. The factors affecting carbon disulfide conversion, including gas flow rate, ultraviolet light intensity, and duration of illumination, were studied to reduce the conversion of carbon disulfide by controlling experimental conditions in the experiment. Finally, the absorption cross sections of carbon disulfide at room temperature and atmospheric pressure were calculated using the absorption spectrum and the carbon disulfide concentration in the absence of carbon disulfide conversion. The wavelengths of 16 absorption peaks on the carbon disulfide absorption cross sections of the vibration change were marked. Carbon disulfide has the maximum absorption cross section of 4.5 × 10–16 cm2/molecule at a wavelength of 198.10 nm.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3