Affiliation:
1. Department of Geography, University of Calgary, Calgary, Alberta, Canada T2N 1N4
2. Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Victoria, British Columbia, Canada V8Z 1M5
Abstract
Numerous large-area, multiple image-based, multiple sensor land cover mapping programs exist or have been proposed, often within the context of national forest monitoring, mapping and modelling initiatives, worldwide. Common methodological steps have been identified that include data acquisition and preprocessing, map legend development, classification approach, stratification, incorporation of ancillary data and accuracy assessment. In general, procedures used in any large-area land cover classification must be robust and repeatable; because of data acquisition parameters, it is likely that compilation of the maps based on the classification will occur with original image acquisitions of different seasonality and perhaps acquired in different years and by different sensors. This situation poses some new challenges beyond those encountered in large-area single image classifications. The objective of this paper is to review and assess general medium spatial resolution satellite remote sensing land cover classification approaches with the goal of identifying the outstanding issues that must be overcome in order to implement a large-area, land cover classification protocol.
Subject
General Earth and Planetary Sciences,Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development
Cited by
233 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献