Coastal Zone Classification Based on U-Net and Remote Sensing

Author:

Liu Pei12ORCID,Wang Changhu3,Ye Maosong1ORCID,Han Ruimei4ORCID

Affiliation:

1. Hainan Academy of Ocean and Fisheries Sciences, Haikou 571125, China

2. Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya 570100, China

3. Department of Architecture and Engineering, Baiyin Vocational College of Mining and Metallurgy, Baiyin 730900, China

4. School of Geography and Environmental Sciences, Hainan Normal University, Haikou 571158, China

Abstract

The coastal zone is abundant in natural resources but has become increasingly fragile in recent years due to climate change and extensive, improper exploitation. Accurate land use and land cover (LULC) mapping of coastal zones using remotely sensed data is crucial for monitoring environmental changes. Traditional classification methods based on statistical learning require significant spectral differences between ground objects. However, state-of-the-art end-to-end deep learning methods can extract advanced features from remotely sensed data. In this study, we employed ResNet50 as the feature extraction network within the U-Net architecture to achieve accurate classification of coastal areas and assess the model’s performance. Experiments were conducted using Gaofen-2 (GF-2) high-resolution remote sensing data from Shuangyue Bay, a typical coastal area in Guangdong Province. We compared the classification results with those obtained from two popular deep learning models, SegNet and DeepLab v3+, as well as two advanced statistical learning models, Support Vector Machine (SVM) and Random Forest (RF). Additionally, this study further explored the significance of Gray Level Co-occurrence Matrix (GLCM) texture features, Histogram Contrast (HC) features, and Normalized Difference Vegetation Index (NDVI) features in the classification of coastal areas. The research findings indicated that under complex ground conditions, the U-Net model achieved the highest overall accuracy of 86.32% using only spectral channels from GF-2 remotely sensed data. When incorporating multiple features, including spectrum, texture, contrast, and vegetation index, the classification accuracy of the U-Net algorithm significantly improved to 93.65%. The major contributions of this study are twofold: (1) it demonstrates the advantages of deep learning approaches, particularly the U-Net model, for LULC classification in coastal zones using high-resolution remote sensing images, and (2) it analyzes the contributions of spectral and spatial features of GF-2 data for different land cover types through a spectral and spatial combination method.

Funder

Hainan Provincial Natural Science Foundation of China

National Natural Science Foundation of China

project of Hainan Province, Hainan Academy of Marine and Fishery Sciences

China Scholarship Council Grant

Major Science and Technology Plan Project of Yazhou Bay Innovation Research Institute of Hainan Tropical Ocean University

Hebei Provincial Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3