A synthesis of abrupt changes in the Asian summer monsoon since the last deglaciation

Author:

Morrill Carrie1,Overpeck Jonathan T.,Cole Julia E.2

Affiliation:

1. Department of Geosciences, Gould-Simpson Building, University of Arizona, Tucson, AZ 85721, USA; National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307–3000, USA .

2. Department of Geosciences, Gould-Simpson Building, University of Arizona, Tucson, AZ 85721, USA

Abstract

We have compiled 36 previously published palaeoclimate records to determine the timing and spatial pattern of century-scale abrupt changes in Asian monsoon precipitation since the last deglaciation. We identify abrupt events from (1) the interpretations of the authors of these records and (2) the more objective moving t-test calculation. Our results indicate that abrupt climatic changes occurred at ~11.5 cal. ka, 4.5–5.0 cal. ka and ad 1300. At the start of the Holocene (~11.5 cal. ka), Asian monsoon precipitation increased dramatically. This climatic change is synchronous with an abrupt warming in the North Atlantic. During the middle Holocene, there was a time of preferred and widespread weakening in monsoon strength (~4.5–5.0 cal. ka). This result contradicts previous notions of either a gradual trend towards drier conditions or a series of abrupt events that occurred in an unorganized fashion across space and time. The middle-Holocene abrupt event could have been synchronous with an abrupt cooling event in the North Atlantic, as well as a warming and intensification of internannual variability in the tropical Pacific. In contrast to previous periods, precipitation changes at ad 1300 have a heterogeneous spatial pattern. We find no conclusive evidence for a change in the Asian monsoon at ~8.2 cal. ka, as suggested by several previous studies. More high-resolution data may be needed to observe this short-lived event. Overall, our results attest to the potential for rapid and major shifts in Asian monsoon precipitation that may be triggered by variations in other components of the climatic system.

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archeology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3