Mimicking the natural thermal environments experienced by seeds to break physiological dormancy to enhance seed testing and seedling production

Author:

Baskin Carol C.1,Baskin Jerry M.2

Affiliation:

1. Department of Biology, University of Kentucky, Lexington, KY 40506-0225 USA

2. Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312 USA

Abstract

Physiological dormancy (PD) is the most common class of seed dormancy on earth. It is highly variable and is an important part of the adaptation of many species to their habitat. Often, two questions are asked about seeds that failed to germinate in a germination test: (1) are they non-viable or dormant, and (2) if dormant do they have PD and how is it broken? We provide an overview on how to approach studies of species with PD for which few or no data are available. Information about habitat environmental conditions during the seed stage can be used to formulate hypotheses on dormancy-breaking and germination requirements. These hypotheses can be tested by a move-along experiment. There are three levels of PD, and they are distinguished by the conditions required to break PD and promote germination. Seeds with non-deep PD (the most common level of PD) require different conditions for dormancy-break and germination, i.e.a change in the season, while those with intermediate and deep PD germinate at the dormancy-breaking conditions, e.g.during a long period of cold stratification. Knowing how to break PD enhances testing for seed viability and helps ensure high germination percentages of viable seeds.

Publisher

International Seed Testing Association

Subject

Horticulture,Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3