Cytotoxic effect of cloned EGFP gene on NCI-H727 cell line via genetically engineered gene transfer system

Author:

Muhi Rasoul Lubna,Ali Marhoon Abeer,Fadhel Abbas Albaayit Shaymaa,Waleed Ali Rusul,Hadi Saleh Tahreer,Abdullah Laftah Al-Rubaii Bahaa

Abstract

Introduction and Aim: Cancers are a complex group of genetic illnesses that develop through multistep, mutagenic processes which can invade or spread throughout the body. Recent advances in cancer treatment involve oncolytic viruses to infect and destroy cancer cells. The Newcastle disease virus (NDV), an oncolytic virus has shown to have anti-cancer effects either directly by lysing cancer cells or indirectly by activating the immune system. The green fluorescent protein (GFP) has been widely used in studying the anti-tumor activity of oncolytic viruses. This study aimed to study the anticancer effect of a recombinant rNDV-GFP clone on NCI-H727 lung carcinoma cell line in vitro.   Materials and Methods: The GFP gene was inserted to a NDV strain to create a recombinant NDV (rNDV- GFP) using reverse genetics technology. The MTT assay was used in evaluating the oncolytic effect of rNDV- GFP on the lung carcinoma NCI-H727 cells. Light and fluorescent microscopy was used to study the cytopathic effects of rNDV-GFP.   Results: MTT assay showed that rNDV-GPF inhibited the NCI-H727 tumor cell death in a time-dependent manner. A significant inhibitory effect (78.3%) for rNDV-GPF on cancer cells was observed at 96h in comparison to rNDV (22.7%) and the cytotoxicity rate was directly proportional to the MOI used. Microscopic studies showed rNDV-GPF to induce cytopathic effect post 24 h of infection.   Conclusion: The GFP-expressing recombinant NDV strains exhibited encouraging results in terms of tumor growth inhibition. Our research set the groundwork for employing recombinant NDV as an anticancer viral vector.  

Publisher

Indian Association of Biomedical Scientists

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3