Bioremediation by bacteria isolated from water contaminated with hydrocarbons

Author:

Fahim Muhsin Khadija1ORCID,Fadhil AboKsour Mohammed1,Hadi Saba1

Affiliation:

1. Department of Microbiology, College of Science, Al-Mustansiriyah University, Iraq

Abstract

Oil pollution is currently a global problem. However, an oil-contaminated ecology is rich in microorganisms that may utilize petroleum oil and hydrocarbons for growth, feeding, and metabolic processes. In the present study, fifty polluted water samples were collected from five stations (ten samples each) in the Al-Fahama oil refinery in eastern Baghdad. The water contamination parameters of these collected water samples were detected. Then, the percentage of water contamination with some heavy metals (zinc, lead, and cadmium) and radioactive elements (uranium, cesium and actinium) was measured. The proportions of these elements were compared within their limits permitted by the World Health Organization (WHO). Fifty-nine bacterial isolates were isolated from polluted water, and 24 isolates of them succeeded in analyzing crude oil. The results of the current study showed that seven isolates belong to the genus Citrobacter amalonaticus (29.16%), six isolates belong to Enterobacter cloacae (25%), three isolates belonged to both Pseudomonas aeruginosa (12.5%) and Ochrobacterum anthropi (12.5%), and human Ochrobacterum. With a percentage of 12.5%, two isolates of Serratia marcescens (8.3%) and one isolate of each Pseudomonas fluorescens, Serratia fonticola, and Burkholderia pseudomallei (4.16%) of each. The optimum of some conditions for the decomposition process was determined in terms of (pH, temperature and crude oil concentration) and the results showed that the optimum degradation conditions were 35°C at pH equal to 7.5 in the presence of 2% of crude oil. Several experiments were conducted to determine the most efficient isolates for oil analysis. Burkholderia pseudomallei and Pseudomonas fluorescens are the most active bacterial species in their oil degradation. Genes responsible for hydrocarbon analysis were revealed in twenty-four bacterial isolates using a polymerase chain reaction (PCR) assay. The results showed that the ALKB gene (alkane hydroxylase) was observed in all bacterial isolates that succeeded in analyzing crude oil with a percentage equal to 100%, NahAc gene (naphthalene dioxygenase) has been recorded in four isolates (16.7%), these four bacterial isolates were Burkholderia pseudomallei, Pseudomonas aeruginosa, Ochrobacterum anthropic, and Pseudomonas fluorescens. Generally, the isolation rate of both C. amalonaticus and E. cloacae isolates was higher than in other studies, which may be due to the hydrocarbon pollution in isolation; both B. pseudomallei and P. fluorescens isolates were the highest active bacterial species in their oil degradation. Genetic results showed that the AlkB gene was the domain compared with other degradation genes used in the current study, followed by NahAc gene. Keywords: Bioremediation, heavy metal, B. pseudomallei, hydrocarbons, crude oil

Publisher

Clinical Biotec

Subject

Infectious Diseases,Applied Microbiology and Biotechnology,Epidemiology,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3