A SPATIOTEMPORAL-AWARE WEIGHTING SCHEME FOR IMPROVING CLIMATE MODEL ENSEMBLE PREDICTIONS

Author:

Fan Ming,Lu Dan,Rastogi Deeksha,Pierce Eric M.

Abstract

Multimodel ensembling has been widely used to improve climate model predictions, and the improvement strongly depends on the ensembling scheme. In this work, we propose a Bayesian neural network (BNN) ensembling method, which combines climate models within a Bayesian model averaging framework, to improve the predictive capability of model ensembles. Our proposed BNN approach calculates spatiotemporally varying model weights and biases by leveraging individual models' simulation skill, calibrates the ensemble prediction against observations by considering observation data uncertainty, and quantifies epistemic uncertainty when extrapolating to new conditions. More importantly, the BNN method provides interpretability about which climate model contributes more to the ensemble prediction at which locations and times. Thus, beyond its predictive capability, the method also brings insights and understanding of the models to guide further model and data development. In this study, we design experiments using an ensemble of CMIP6 climate model simulations to illustrate the BNN ensembling method's capability with respect to prediction accuracy, interpretability, and uncertainty quantification (UQ). We demonstrate that BNN can correctly assign larger weights to the regions and seasons where the individual model fits the observation better. Moreover, its offered interpretability is consistent with our understanding of localized climate model performance. Additionally, BNN shows an increasing uncertainty when the prediction is farther away from the period with constrained data, which appropriately reflects our trustworthiness of the models in the changing climate.

Publisher

Begell House

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3