Author:
Qin Zhentao,Tang Yulin,Jia Yan,Liu Shi,Yang Ru,Zhao Xiangyu,Zhang Jin,Mao Xiaodong
Subject
Computer Science Applications,Mechanical Engineering,Condensed Matter Physics
Reference16 articles.
1. Bodla, N., Singh, B., Chellappa, R., and Davis, L.S., Soft-NMS-Improving Object Detection with One Line of Code, Proc. ofthe IEEE Int. Conf. on Computer Vision, Venice, Italy, pp. 5561-5569, 2017.
2. Deepan, P. and Sudha, L.R., Effective Utilization of YOLOv3 Model for Aircraft Detection in Remotely Sensed Images, Mater. Today: Proc., 2021. DOI: 10.1016/j.matpr.2021.02.831
3. Fan, L., Su, B., and Wang, Y.H., Improved Real-Time Pedestrian Detection Algorithm Based on YOLOv3, J. Shanxi Univ. (Nat. Sci. Ed.), vol. 42, no. 4, pp. 709-717, 2019. DOI: 10.13451/j.cnki.shanxi.univ(nat. sci.).2019.06.03.002
4. Ge, H., Zhu, Z., Lou, K., Wei, W., Liu, R., Damasevicius, R., and Wozniak, M., Classification of Infrared Objects in Manifold Space Using Kullback-Leibler Divergence of Gaussian Distributions of Image Points, Symmetry, vol. 12, no. 3, p. 434, 2020. DOI: 10.3390/sym12030434
5. Girshick, R., Fast R-CNN, Proc. of the IEEE Int. Conf. on Computer Vision, Santiago, Chile, pp. 1440-1448, 2015.