Classification of Infrared Objects in Manifold Space Using Kullback-Leibler Divergence of Gaussian Distributions of Image Points

Author:

Ge HuilinORCID,Zhu Zhiyu,Lou Kang,Wei Wei,Liu Runbang,Damaševičius RobertasORCID,Woźniak MarcinORCID

Abstract

Infrared image recognition technology can work day and night and has a long detection distance. However, the infrared objects have less prior information and external factors in the real-world environment easily interfere with them. Therefore, infrared object classification is a very challenging research area. Manifold learning can be used to improve the classification accuracy of infrared images in the manifold space. In this article, we propose a novel manifold learning algorithm for infrared object detection and classification. First, a manifold space is constructed with each pixel of the infrared object image as a dimension. Infrared images are represented as data points in this constructed manifold space. Next, we simulate the probability distribution information of infrared data points with the Gaussian distribution in the manifold space. Then, based on the Gaussian distribution information in the manifold space, the distribution characteristics of the data points of the infrared image in the low-dimensional space are derived. The proposed algorithm uses the Kullback-Leibler (KL) divergence to minimize the loss function between two symmetrical distributions, and finally completes the classification in the low-dimensional manifold space. The efficiency of the algorithm is validated on two public infrared image data sets. The experiments show that the proposed method has a 97.46% classification accuracy and competitive speed in regards to the analyzed data sets.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3