STUDY ON TWO-PHASE FLOW AND TEMPERATURE UNIFORMITY CHARACTERISTICS OF MICROCHANNEL HEAT PIPE

Author:

Yin Renpan,Zhang Yaping,Jiang Haochen,Zhang Ruijia

Abstract

In order to offset the local heat flux concentration phenomenon and ensure the steady performance of electronics, a test apparatus for evaluating the thermal performance of a microchannel heat pipe was constructed to investigate the thermal uniformity of the microchannel heat pipe under varying heat source placements. The experimental findings indicate that at a power of 25 W with the heat source positioned on plane C, the overall thermal resistance of the heat pipe differs by 60.1% compared to the local thermal resistance. Furthermore, the heat pipe exhibits a minimum overall thermal resistance of 0.3 K/W, highlighting improved temperature uniformity and quicker start-up performance. The mathematical model based on the lattice Boltzmann method is established and the dynamic operation mechanism of boiling and condensation under the action of local heat source in closed space is discussed. The simulation results suggested that when the heat source is positioned centrally on the underside, the diffusion of the working fluid vapor becomes more uniform and the most intense boiling occurs. The boiling of the working fluid in this area results in the most frequent and intense periodic improvement in heat transfer, thus achieving optimal thermal performance in terms of temperature distribution for the heat pipe.

Publisher

Begell House

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3